Source code for lavuelib.plugins.filters
# Copyright (C) 2017 DESY, Notkestr. 85, D-22607 Hamburg
#
# lavue is an image viewing program for photon science imaging detectors.
# Its usual application is as a live viewer using hidra as data source.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation in version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor,
# Boston, MA 02110-1301, USA.
#
# Authors:
# Jan Kotanski <jan.kotanski@desy.de>
#
""" set of image sources """
import json
import numpy as np
from scipy import ndimage
[docs]class HGap(object):
""" Horizontal gap filter"""
def __init__(self, configuration=None):
""" constructor
:param configuration: JSON list with horizontal gap pixels to add
:type configuration: :obj:`str`
"""
#: (:obj:`list` <:obj: `str`>) list of indexes for gap
self.__indexes = [
int(idx) for idx in json.loads(configuration)]
def __call__(self, image, imagename, metadata, imagewg):
""" call method
:param image: numpy array with an image
:type image: :class:`numpy.ndarray`
:param imagename: image name
:type imagename: :obj:`str`
:param metadata: JSON dictionary with metadata
:type metadata: :obj:`str`
:param imagewg: image wigdet
:type imagewg: :class:`lavuelib.imageWidget.ImageWidget`
:returns: numpy array with an image
:rtype: :class:`numpy.ndarray` or `None`
"""
return np.insert(image, self.__indexes, 0, axis=1)
[docs]class VGap(object):
""" Vertical gap filter"""
def __init__(self, configuration=None):
""" constructor
:param configuration: JSON list with vertical gap pixels to add
:type configuration: :obj:`str`
"""
#: (:obj:`list` <:obj: `str`>) list of indexes for gap
self.__indexes = [
int(idx) for idx in json.loads(configuration)]
def __call__(self, image, imagename, metadata, imagewg):
""" call method
:param image: numpy array with an image
:type image: :class:`numpy.ndarray`
:param imagename: image name
:type imagename: :obj:`str`
:param metadata: JSON dictionary with metadata
:type metadata: :obj:`str`
:param imagewg: image wigdet
:type imagewg: :class:`lavuelib.imageWidget.ImageWidget`
:returns: numpy array with an image
:rtype: :class:`numpy.ndarray` or `None`
"""
return np.insert(image, self.__indexes, 0, axis=0)
[docs]def rot45(image, imagename, metadata, imagewg):
""" rotate image by 45 deg
:param image: numpy array with an image
:type image: :class:`numpy.ndarray`
:param imagename: image name
:type imagename: :obj:`str`
:param metadata: JSON dictionary with metadata
:type metadata: :obj:`str`
:param imagewg: image wigdet
:type imagewg: :class:`lavuelib.imageWidget.ImageWidget`
:returns: numpy array with an image
:rtype: :class:`numpy.ndarray` or `None`
"""
if image is not None and image.dtype.kind == 'f' \
and np.isnan(image.min()):
image = np.nan_to_num(image)
return ndimage.rotate(image, 45)
[docs]class WeightedSum(object):
""" Weighted sum of channel images"""
def __init__(self, configuration=None):
""" constructor
:param configuration: JSON list of channel image weights
:type configuration: :obj:`str`
"""
#: (:obj:`list` <:obj: `str`>) list of indexes for gap
self.__weights = [
wg for wg in json.loads(configuration or "[]")]
def __call__(self, image, imagename, metadata, imagewg):
""" call method
:param image: numpy array with an image
:type image: :class:`numpy.ndarray`
:param imagename: image name
:type imagename: :obj:`str`
:param metadata: JSON dictionary with metadata
:type metadata: :obj:`str`
:param imagewg: image wigdet
:type imagewg: :class:`lavuelib.imageWidget.ImageWidget`
:returns: numpy array with an image
:rtype: :class:`numpy.ndarray` or `None`
"""
if hasattr(image, "shape") and len(image.shape) == 3:
weights = np.array(
[(self.__weights[i]
if (len(self.__weights) > i and
type(self.__weights[i]) in [int, float])
else 1)
for i in range(image.shape[0])])
if hasattr(np, "ma"):
image_m = np.ma.array(image, mask=np.isnan(image))
return np.ma.dot(image_m.T, weights).filled(np.nan).T
else:
return np.where(np.isnan(image), 0, image).T.dot(weights).T