Source code for lavuelib.plugins.filters

# Copyright (C) 2017  DESY, Notkestr. 85, D-22607 Hamburg
#
# lavue is an image viewing program for photon science imaging detectors.
# Its usual application is as a live viewer using hidra as data source.
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation in  version 2
# of the License.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin Street, Fifth Floor,
# Boston, MA  02110-1301, USA.
#
# Authors:
#     Jan Kotanski <jan.kotanski@desy.de>
#

""" set of image sources """

import json
import numpy as np
from scipy import ndimage


[docs]class HGap(object): """ Horizontal gap filter""" def __init__(self, configuration=None): """ constructor :param configuration: JSON list with horizontal gap pixels to add :type configuration: :obj:`str` """ #: (:obj:`list` <:obj: `str`>) list of indexes for gap self.__indexes = [ int(idx) for idx in json.loads(configuration)] def __call__(self, image, imagename, metadata, imagewg): """ call method :param image: numpy array with an image :type image: :class:`numpy.ndarray` :param imagename: image name :type imagename: :obj:`str` :param metadata: JSON dictionary with metadata :type metadata: :obj:`str` :param imagewg: image wigdet :type imagewg: :class:`lavuelib.imageWidget.ImageWidget` :returns: numpy array with an image :rtype: :class:`numpy.ndarray` or `None` """ return np.insert(image, self.__indexes, 0, axis=1)
[docs]class VGap(object): """ Vertical gap filter""" def __init__(self, configuration=None): """ constructor :param configuration: JSON list with vertical gap pixels to add :type configuration: :obj:`str` """ #: (:obj:`list` <:obj: `str`>) list of indexes for gap self.__indexes = [ int(idx) for idx in json.loads(configuration)] def __call__(self, image, imagename, metadata, imagewg): """ call method :param image: numpy array with an image :type image: :class:`numpy.ndarray` :param imagename: image name :type imagename: :obj:`str` :param metadata: JSON dictionary with metadata :type metadata: :obj:`str` :param imagewg: image wigdet :type imagewg: :class:`lavuelib.imageWidget.ImageWidget` :returns: numpy array with an image :rtype: :class:`numpy.ndarray` or `None` """ return np.insert(image, self.__indexes, 0, axis=0)
[docs]def rot45(image, imagename, metadata, imagewg): """ rotate image by 45 deg :param image: numpy array with an image :type image: :class:`numpy.ndarray` :param imagename: image name :type imagename: :obj:`str` :param metadata: JSON dictionary with metadata :type metadata: :obj:`str` :param imagewg: image wigdet :type imagewg: :class:`lavuelib.imageWidget.ImageWidget` :returns: numpy array with an image :rtype: :class:`numpy.ndarray` or `None` """ if image is not None and image.dtype.kind == 'f' \ and np.isnan(image.min()): image = np.nan_to_num(image) return ndimage.rotate(image, 45)
[docs]class WeightedSum(object): """ Weighted sum of channel images""" def __init__(self, configuration=None): """ constructor :param configuration: JSON list of channel image weights :type configuration: :obj:`str` """ #: (:obj:`list` <:obj: `str`>) list of indexes for gap self.__weights = [ wg for wg in json.loads(configuration or "[]")] def __call__(self, image, imagename, metadata, imagewg): """ call method :param image: numpy array with an image :type image: :class:`numpy.ndarray` :param imagename: image name :type imagename: :obj:`str` :param metadata: JSON dictionary with metadata :type metadata: :obj:`str` :param imagewg: image wigdet :type imagewg: :class:`lavuelib.imageWidget.ImageWidget` :returns: numpy array with an image :rtype: :class:`numpy.ndarray` or `None` """ if hasattr(image, "shape") and len(image.shape) == 3: weights = np.array( [(self.__weights[i] if (len(self.__weights) > i and type(self.__weights[i]) in [int, float]) else 1) for i in range(image.shape[0])]) if hasattr(np, "ma"): image_m = np.ma.array(image, mask=np.isnan(image)) return np.ma.dot(image_m.T, weights).filled(np.nan).T else: return np.where(np.isnan(image), 0, image).T.dot(weights).T